Static Solution of the General Relativistic Nonlinear σ-Model Equation
نویسندگان
چکیده
The nonlinear σ-model is considered to be useful in describing hadrons (Skyrmions) in low energy hadron physics and the approximate behavior of the global texture. Here we investigate the properties of the static solution of the nonlinear σmodel equation coupled with gravity. As in the case where gravity is ignored, there is still no scale parameter that determines the size of the static solution and the winding number of the solution is 1/2. The geometry of the spatial hyperspace in the asymptotic region of large r is explicitly shown to be that of a flat space with some missing solid angle.
منابع مشابه
General relativistic hydrodynamic flows around a static compact object in final stages of accretion flow
Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent an...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملFriction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique
Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...
متن کاملAnalysis of convergence of solution of general fuzzy integral equation with nonlinear fuzzy kernels
Fuzzy integral equations have a major role in the mathematics and applications.In this paper, general fuzzy integral equations with nonlinear fuzzykernels are introduced. The existence and uniqueness of their solutions areapproved and an upper bound for them are determined. Finally an algorithmis drawn to show theorems better.
متن کاملLorentz covariant reduced - density - operator theory for relativistic quantum information processing
In this paper, we derived Lorentz covariant quantum Liouville equation for the density operator which describes the relativistic quantum information processing from Tomonaga-Schwinger equation and an exact formal solution for the reduced-density-operator is obtained using the projector operator technique and the functional calculus. When all the members of the family of the hypersurfaces become...
متن کامل